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Recognition

• Assume we have tagged an object with a bounding box

Whose face is it?

Marilyn Manson? A man from Woodabe tribe?

...
Mr T?

Browse your facebook friends….
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Recognition depends on representation

𝑓(𝐼0) 𝑓(𝐼1) 𝑓(𝐼2)
𝑓(𝐼3)

𝑑(𝑓 𝐼0 , 𝑓(𝐼𝑖))

• Select the one with minimal distance?

• Select the one(s) whose distance is sufficiently small?

3



Recognition depends on representation

• Alternative application: Is this and apple or pear? 

• Quality of recognition will depend on the quality of image representation 

– features.

𝑓(𝐼)

Compactness (c)
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How to come up with features?

1. Natural (linear) coordinate systems: 

For some applications, it is enough just to linearly transform the input 

data.

2. Handcrafted nonlinear transforms:

Nonlinear transforms improve feature robustness.

3. Feature selection:

Machine learning to select optimal features from a pool of several 

handcrafted transforms.

4. End-to-end learning of feature transform:

Have machine learn entire feature extraction and selection pipeline.
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LEARNING NATURAL COORDINATE SYSTEMS 
BY SUBSPACE METHODS

Machine Perception
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• Image of a face can be treated as a

high-dimensional gray-level vector 

(e.g., stack columns one on top 

of the other), giving:

• 100x100 image = 10,000x1 dim vector

• Still only a fraction of 10,000-dim

vectors of natural images really correspond to faces.

• Constrain our representation such that the vectors form a subspace 

spanned only by faces!

Motivation: A space of all faces
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outlier?

A face sub-space in a nutshell
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outlier?

A face sub-space in a nutshell

𝒖𝟐•

Any point in high dimensional system can be written as a sum of projections to basis vectors 𝑢𝑖.

a4 +...= a1 + a2 + a3 +

𝒖𝑁

aN
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outlier?

A face sub-space in a nutshell

𝒖𝟐•

Any point in high dimensional system can be written as a sum of projections to basis vectors 𝑢𝑖.

≈ a1 + a2

Projection to the right subspace does not distort
the data significantly.
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Reconstruction subspace

• Instead of memorizing all pixels in an image, remember just:

1. The subspace vectors (e.g., 𝑢1, 𝑢2, …)

2. And projections of the images onto the subspace (e.g., 𝑎1, 𝑎2, …)

+...= a1 + a2

𝒖𝑁

aN

≈ a1 + a2

Projection to the right subspace does not 
distort the data significantly…
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RECONSTRUCTION SUBSPACE: 
PRINCIPAL COMPONENT ANALYSIS (PCA)

Machine perception
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• Find a low-dimensional subspace that efficiently compresses data

• We are given 𝑁 𝑀-dimensional points (images): 𝑥1, … , 𝑥𝑁 ; 𝑥𝑖 ∈ 𝑅𝑀

• A toy example of finding 1D subspace in 2D data:

find a unit vector 𝒖 ∈ 𝑅𝑀 such that projection to this vector will minimize 

the reconstruction error.

𝒖

Pretty bad choice of 𝒖 Much better choice of 𝒖

𝒖

Minimization of reconstruction error
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Reconstruction subspace – intuition

• Reconstruction error minimization is equivalent to maximization of 

variance of projected points
Projection equation:
a𝑖 = 𝒖𝑇(𝒙𝑖 − 𝝁)

𝒖

𝒙𝑖
𝑎𝑖

𝝁

𝒖
𝑎𝑖

Projection to 𝒖 visualized:

Video by Danijel Skočaj14



• Variance of the projections a𝑖 = 𝒖𝑇(𝒙𝑖 − 𝝁).

𝒖

𝒙𝑖
𝑎𝑖

𝝁 𝒖
𝑎𝑖

Projection to 𝒖 visualized:
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Data covariance matrix 𝚺

var(a) T= u Σu PCA task: Find 𝑢 that maximizes var(𝑎)!

PCA derivation (variance maximization)
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PCA – variance maximization!

• Task: Find u, that maximizes the following cost function

• Need to constrain our solution:

• Write a Lagrangian for constrained optimization: 

• We have obtained a standard equation whose solutions for u are the eigenvectors

of Σ.

(the variance along vector u)
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PCA – eigenvector maximizes the variance?

• Recall the projected data variance we want to maximize: 𝑣𝑎𝑟 𝑎 = 𝒖𝑇𝚺𝒖 .

• Variance is maximized by 𝒖 that satisfies 𝚺𝒖 = 𝝀𝒖, i.e., eigenvector of 𝚺.                      

• But which eigenvector maximizes the variance?

• Multiplying both sides by 𝒖𝑇 yields: 𝒖T𝚺𝒖 = 𝜆𝒖T𝒖 = 𝜆 ⋅ 1.

• Therefore the maximum of 𝑣𝑎𝑟 𝑎 = 𝜆 is reached at the largest eigenvalue.

• This means that the variance 𝑣𝑎𝑟 𝑎 is maximized by the eigenvector that 

corresponds to the largest eigenvalue.

• A similar argument can be made to prove that the eigenvectors 

corresponding to large eigenvalues are directions of dominant variance in 

the data.
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• Calculate eigenvectors and eigenvalues of covariance matrix 𝚺

• Eigenvectors: main directions of variance, perpendicular to each other.

• Eigenvalues: variance of data in direction of eigenvectors

• PCA is actually: change of coordinate system that captures major directions of 

variance in the data.

1 1 e

g

1g

2g

PCA – geometric interpretation

p1

p2

(0,0)

a1

a2

(0,0)

1. Translate to origin by 𝐭 = 𝝁
2. Rotate by 𝑹 = 𝑼

𝑼 = [𝒖1, 𝒖2]
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Projection and reconstruction

• We know the covariance matrix 𝚺 and the mean value 𝝁

• Concatenate 𝑀 first (this case all) eigenvectors into a rotation matrix U:

• Projection of data xi into the new coordinate system:

• Projection of yi back into the original coordinate system:
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Projection and reconstruction

• Similar holds also for K < M !

• Create U from just the first K eigen vectors:

• Projection to subspace:

• Reconstruction:

Reconstruction error:

𝑦𝑖 = 𝑎1, 0
𝑇
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Example: Object representation

= + a1 + a2 + a3

Slide credit: Ales Leonardis

Q: How many of 𝑎𝑖 should you retain?
21
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How many eigenvectors for reconstruction?

• Can show that the sum of squared differences 𝜖(𝑚) between training images 𝒙𝑖 𝑖=1:𝑁

and their reconstructions using only first m eigen vectors is given by:

Cumulative sum of eigenvalues
(explained variance)

90% of variance

𝑚 eigen vectors

𝜖(𝑚) =෍

𝑗=1

𝑁

𝜆𝑗 −෍

𝑗=1

𝑚

𝜆𝑗 = ෍

𝑗=𝑚+1

𝑁

𝜆𝑗
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Build you own subspace!

• Reshape all training images into column vectors:

• Calculate the average image:

• Center data:

• Calculate the covariance matrix: 

• Calculate eigenvector matrix U and eigenvalue matrix S (using, e.g., svd):

• Construct a matrix using only first K eigen vectors: 

• For each test image x:

• Project to subspace:

• Reconstruct:  
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Important!

• Do not implement PCA as shown in the previous slide! 

1. Consider the size of the covariance matrix C

• The size is MM, where M is the number of pixels in the image!

• But, we have only N training examples, typically N<<M.

 So C will have at most rank N!

2. In any case, we need only first k eigen vectors!
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The inner-product matrix

• For a large 𝑀, the SVD of 𝐶 becomes inefficient.

• For N <<M, it is better to compose the 𝑁 × 𝑁 inner product matrix        :

• Eigenvectors and eigenvalues of matrix  𝑪 are calculated from the 

eigenvectors 𝒖𝑖
′ and eigenvalues 𝜆𝑖

′ of 𝑪′:

This is called 
“the dual PCA”

1
dd

T

N
=C X X
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A general PCA algorithm

Slide credit: Danijel Skočaj28



• Assume we have used a large collection of faces to construct the 

subspace.

• Assumption: faces will be well reconstructed by the subspace!

Small reconstruction
error

Large reconstruction
error

[face]/
[not face]?

[face]/
[not face]?

Classification by subspace reconstruction
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Classification by subspace reconstruction

• If the window contains a category for which the subspace was constructed, the 

reconstruction will work well, otherwise not!

• A real-life example

Cropped

Cropped

Reconstructed

project to 
subspace and back

Reconstructed

project to 
subspace and back

Decent similarity

Not similar
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Detection by distance from subspace

• Use a subspace learned on faces to detect a face.

• Approach: slide a window over each image position and calculate the 

reconstruction error.

• Repeat for all scales. Makes sense to normalize the window intensity |W|=1.

• Low reconstruction error 

indicates a face.

(i.e., apply a threshold)

2

i i − x x
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DecoderEncoder

PCA is a linear autoencoder
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DecoderEncoder

Encoder-Decoder does not have to be linear
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𝒙𝑖 𝒚𝑖 ෥𝒙𝑖
neural network neural network

Θ1 Θ2

• Modern Autoencoders apply (convolutional) neural networks to map 

into a nonlinear subspace (latent space)

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798



Autoencoders don’t have to just reconstruct
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ℒ Θ1, Θ2 = 𝑰𝑖 − ෨𝑰𝑖
2

neural network
Θ1

neural network
Θ2

Faultless products

Anomalies detected by differencing the reconstruction and input

Reconstructions

Zavrtanik, Kristan, Skočaj, DRÆM – A discriminatively trained reconstruction embedding for surface anomaly detection, ICCV 2021



Autoencoders don’t have to just reconstruct
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neural network
Θ1

neural network
Θ2

Colorized image

Zhang et al., Colorful Image Colorization, ECCV 2016 [GIT]

ℒ Θ1, Θ2 = 𝑰𝑖 − ෨𝑰𝑖
2

Color image Grayscale image

http://richzhang.github.io/colorization


Textbooks on PCA

• Szeliski, R., Computer vision – algorithms and applications, 2011, 

Section14.2.1 (available online)

• Forsyth, Ponce, Computer vision – a modern approach, second edition, 

2012, Section 16.1.5

• Prince, S.J.D. Computer vision – modelling learning and inference, 2012, 

Section 13.4 (to 13.4.3) (available online)
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Classification task

• Assume we are given some training data of two categories:

• Task: Find a feature space in which these categories are most 

easily distinguishable (maximize discrimination).

Category 1 Category 2
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• PCA minimizes reprojection (reconstruction) error 

• PCA is „unsupervised“: does not use class-label information

• That is why the discriminative information is not necessarily preserved.

Could we apply PCA?
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DISCRIMINATION SUBSPACE: 
LINEAR DISCRIMINANT ANALYSIS (LDA)

Machine perception
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• Assume we know the class labels.

• Task: derive an approach that takes the 

class-labels into consideration in 

subspace estimation.

Find a subspace that:

• Maximizes distances between classes

• Minimizes distances within classes

w

x

x

Class1

Class2

Subspace defined by 𝒘.

Linear Discriminant Analysis (LDA)
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LDA – the mean image

Class1

Class2

x

x

• Let X1, X2,…, Xc be sets of images from 

c classes and let each set contain k 

images: 𝑋𝑖 = 𝑥𝑗
(𝑖)

𝑗=1:𝑘
.

• For each class the mean image i:

• The mean image over all classes:

( )

1

1
j

k
i

i

j

x
k


=

= 


=

=
c

i

i
c 1

1


𝑥𝑗
(1)
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Class1

Class2

x

x

• The within-class scatter matrix:

• The between-class scatter matrix:

( ) ( )

1

( )( )
c

i i T

W j i j i

i j

S x x 
=

= − −

T

ii

c

i

iB NS ))((
1

 −−=
=

𝑥𝑗
(1)

LDA – scatter matrices (covariances)
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LDA – The cost function

Class1

Class2

• Looking for a projection direction w, 

such that the projection of: 

• within-class scatter matrix 𝑆𝑊 is small 

(compact classes)

• between-class scatter matrix 𝑆𝐵 is 

large (classes far apart)

• Recall covariance matrix projection 

from PCA derivation:

• The projected scatter matrices:

wopt
2 ( ) T =w w Σw

2 T

W WS = w w
2 T

B BS = w w

43



LDA – The cost function

Class1

Class2

x

x

• The projected variances:

• Ronald A. Fisher formulated the Linear 

Discriminant (in 1936):

• Fisher criteria (cost function):

wopt

𝑥𝑗
(1)

𝜎𝑊
2 = 𝐰𝑇𝑆𝑤𝐰

𝜎𝐵
2 = 𝐰𝑇𝑆𝑏𝐰

2

2
( ) B

W

J



=w
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• Maximize cost function over w:

the solution as a generalized eigenvalue problem:

• If        is full-rank, we have                           ,
which is in fact the standard eigenvalue problem.

• For c classes we get at most (c-1) projection directions.

( )
T

B

T

W

w S w
J w

w S w
=

B WS w S w=

WS 1

W BS S w w− =

LDA – optimal projection calculation
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LDA application

• Training:

• Compute LDA on a set of images X, and calculate the basis functions W as well as center means 

(μ1, μ2, ...) and overall mean μ.

• Recognition:

• Project new image x into the 

LDA subspace using the matrix W

• Find the nearest class center 

among all (projected) class centers:

Class 1

Class 2

𝑾

New 
image

1

W BS S w w− =
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LDA application

• Problem of singularities with high-dimensional data

• If the data lies on a subspace, the 

within-class scatter matrix 𝑆𝑊 will be singular.

• Solution: find a non-degenerated subspace on the training set using 

the PCA and perform LDA on the data projected to this subspace first.

1

W BS S w w− =

Class 1 Class 2

( ) ( )

1

( )( )
c

i i T

W j i j i

i j

S x x 
=

= − −
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The LDA algorithm
function [W,Ms]=lda(X,c,n)

% X: input samples in columns, arranged by classes

% c, n: number of classes, number of samples per class

% W: LDA subspace basis vectors

% Ms: class means in the LDA subspace

SB=0; SW=0;

MM=mean(X')'; %overall mean

for i=1:c

Ms(:,i)=mean(X(:,(i-1)*n+1:i*n)')';  %class means

SB=SB+n*(Ms(:,i)-MM)*(Ms(:,i)-MM)';  % between class scatter m.

for j=1:n % within class scatter matrix

SW=SW+(X(:,(i-1)*n+j)-Ms(:,i))*(X(:,(i-1)*n+j)-Ms(:,i))'; 

end;

end;

% the solution of a generalized eigenproblem: 

[W, EIGD] = eigs(inv(SW)*SB, c-1,'LM',opts);  

Ms=W'*Ms;  %map means into the LDA space

slide credit: Danijel Skočaj48



Example

• Male vs. Female faces

• Success rate in recognition:

• Same persons: 95%

• New persons: 92%

From K. Etemad, R. Chellapa, Discriminant analysis for recognition 
of human faces. J. Opt. Soc. Am. A,Vol. 14, No. 8, August 1997 

slide credit: Danijel Skočaj

Projection into only a single
most discriminative direction w.
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Example

• Images of ten persons projected onto the first two main directions 

using LDA and PCA:

From K. Etemad, R. Chellapa, Discriminant analysis for recognition 
of human faces. J. Opt. Soc. Am. A,Vol. 14, No. 8, August 1997 

slide credit: Danijel Skočaj

LDA

PCA
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Many more subspace methods exist

• CCA, ICA, LLE, Robust variants, Kernel PCA, …

• Sparse reconstruction

• Deep learning era: 

• PCA equivalents : Autoecoders

http://vcc.kaust.edu.sa/Pages/ICCV2013ShortCourse.aspx
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https://medium.com/swlh/introduction-to-autoencoders-56e5d60dad7f

https://medium.com/swlh/introduction-to-autoencoders-56e5d60dad7f
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