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Recognition

* Assume we have tagged an object with a bounding box

Whose face is it?

Marllyn Manson? A maa from Woabe tribe?



Recognition depends on representation
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e Select the one with minimal distance?

* Select the one(s) whose distance is sufficiently small?



Recognition depends on representation

* Alternative application: Is this and apple or pear?
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* Quality of recognition will depend on the quality of image representation
— features.
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How to come up with features?

1. Natural (linear) coordinate systems:
For some applications, it is enough just to linearly transform the input
data.

2. Handcrafted nonlinear transforms:
Nonlinear transforms improve feature robustness.

3. Feature selection:
Machine learning to select optimal features from a pool of several

handcrafted transforms.

4. End-to-end learning of feature transform:
Have machine learn entire feature extraction and selection pipeline.



Machine Perception

LEARNING NATURAL COORDINATE SYSTEMS
BY SUBSPACE METHODS




Motivation: A space of all faces

* Image of a face can be treated as a
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high-dimensional gray-level vector

(e.g., stack columns one on top
of the other), giving:
 100x100 image = 10,000x1 dim vector
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 Still only a fraction of 10,000-dim
vectors of natural images really correspond to faces.

* Constrain our representation such that the vectors form a subspace

spanned only by faces!



A face sub-space in a nutshell
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A face sub-space in a nutshell
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Any point in high dimensional system can be written as a sum of projections to basis vectors u;.




A face sub-space in a nutshell

Pixel value 2

Pixel value 2

Pixel value 1

Projection to the right subspace does not distort
the data significantly.

Any point in high dimensional system can be written as a sum of projections to basis vectors u;.




Reconstruction subspace

Projection to the right subspace does not
distort the data significantly...
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* Instead of memorizing all pixels in an image, remember just:

Pixel value 2

Pixel value 1

1. The subspace vectors (e.g., u1,uU,, ...)

2. And projections of the images onto the subspace (e.g., a4, a,, ...)




Machine perception

RECONSTRUCTION SUBSPACE:
PRINCIPAL COMPONENT ANALYSIS (PCA)




Minimization of reconstruction error

* Find a low-dimensional subspace that efficiently compresses data
* We are given N M-dimensional points (images): x4, ..., Xy ; X; € RM

* Atoy example of finding 1D subspace in 2D data:
find a unit vector u € RM such that projection to this vector will minimize
the reconstruction error.
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Reconstruction subspace — intuition

e Reconstruction error minimization is equivalent to maximization of
variance of projected points

Projection equation:
N
=u (x; —




PCA derivation (variance maximization)

* Variance of the projections a; = u’ (x; — ).

Projection to u visualized:
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Data covariance matrix X

var(a) = U'XU —— PCA task: Find u that maximizes var(a)!




PCA - variance maximization!

e Task: Find u, that maximizes the following cost function

E (u) — uT du (the variance along vector u)

* Need to constrain our solution: HU-H2 =1

 Write a Lagrangian for constrained optimization:

Fu) =u’Zu - Au'u-1)

F

OF(u)a
u

du = )\u

* We have obtained a standard equation whose solutions for u are the eigenvectors
of X.



PCA - eigenvector maximizes the variance?

e Recall the projected data variance we want to maximize: var(a) = u'Zu .
* Variance is maximized by u that satisfies Xu = Au, i.e., eigenvector of X.

* But which eigenvector maximizes the variance?

« Multiplying both sides by u” yields: u'2u = AuTu = 1- 1.

* Therefore the maximum of var(a) = Ais reached at the largest eigenvalue.

* This means that the variance var(a) is maximized by the eigenvector that
corresponds to the largest eigenvalue.

* Asimilar argument can be made to prove that the eigenvectors
corresponding to large eigenvalues are directions of dominant variance in
the data.
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PCA — geometric interpretation

e C(Calculate eigenvectors and eigenvalues of covariance matrix X

* Eigenvectors: main directions of variance, perpendicular to each other.
U= [ul'uZ]

* Eigenvalues: variance of data in direction of eigenvectors

1. Translatetooriginbyt=pu

p2 2. RotatebyR=U

)\1111

(0,0) pl

 PCA is actually: change of coordinate system that captures major directions of
variance in the data.
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Projection and reconstruction

* We know the covariance matrix ¥ and the mean value u

 Concatenate M first (this case all) eigenvectors into a rotation matrix U:

Uz[ul,...,uM]

(0,0)

* Projection of data x; into the new coordinate system:
T
yi = U (x; — p)
* Projection of y, back into the original coordinate system:

x; = Uy; + p




Projection and reconstruction

e Similar holds also for K< M !

* Create U from just the first K eigen vectors:

ﬁz[ul,...,uK]

(0,0)
e Projection to subspace: Reconstruction error:
_ 11T R P
yi = U" (xi — p) [Ixi = x|

e Reconstruction:

iiziji—l—u




Example: Object representation
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Q: How many of a; should you retain?




How many eigenvectors for reconstruction?

« Can show that the sum of squared differences €(m) between training images {x;};—1.x
and their reconstructions using only first m eigen vectors is given by:

Reconstruction Eigenvalues Cumulative sum of eigenvalues
with m eigenvectors s (largest to smallest) (explained variance)
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Build you own subspace!

e Reshape all training images into column vectors: [Xl, ), PRI ,XN]

* Calculate the average image: u = % ]ZV: X;

« Centerdata: Xy = [x1 — i, X9 — i1, . .z.:,lxN — ]

e Calculate the covariance matrix: C= = ;Nl(xi —p)(xi — p)T = £ X X7

e Calculate eigenvector matrix U and eigezn_value matrix S (using, e.g., svd): C = USV?{
e Construct a matrix using only first K eigen vectors: U = [111, el UK]

* For each test image x:

y =UT(x — p)

* Project to subspace:

e Reconstruct:

i:ﬂy+u



Important!

* Do not implement PCA as shown in the previous slide!
N

C =4 3 (=i — )7 = XX}

1. Consider the size of the covariance matrix C
 The size is MxM, where M is the number of pixels in the image!
e But, we have only N training examples, typically N<<M.

— So C will have at most rank N!

2. In any case, we need only first k eigen vectors!




The inner-product matrix

 Foralarge M, the SVD of C becomes inefficient.

.
C= ﬁXdXOI
« For N <<M, it is better to compose the N X N inner product matrix C’ :
/1 T

* Eigenvectors and eigenvalues of matrix C are calculated from the
eigenvectors u; and eigenvalues A; of C':

. /
Ai = )\i , This is called
Xau, 1=1... N “the dual PCA”

u; = /NN
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A general PCA algorithm

Input: data matrix X

Output: mean value i, eigenvectors U, eigenvalues \ .

1. Estimate the mean vector: pu = % Eil X

2. Center the input data around the mean: Xz — Xz —

3. ifM<N then

4. Estimate the covariance matrix : C = %)"(XT

5. Perform SVD on C . Obtain eigenvectors UU and eigenvalues \ .
6. else

7. Estimate the inner product matrix: C’ = ﬁf(TX

8. Perform SVD on (C'. Obtain eigenvectors U’ and eigenvalues .
0. Determine the eigenvectors U : u; = X—ui, , 1=1...N
10. Determine the eigenvalues XA = \’ VA

11. endif



Classification by subspace reconstruction

e Assume we have used a large collection of faces to construct the
subspace.

e Assumption: faces will be well reconstructed by the subspace!

Large reconstruction Small reconstruction
= .,
er\or

[face]/ [face]/
[nOtfa\ce]? [not face]?




Classification by subspace reconstruction

e |f the window contains a category for which the subspace was constructed, the
reconstruction will work well, otherwise not!

e Areal-life example

project to
subspace and back

project to
subspace and back

Not similar

30



Detection by distance from subspace

e Use a subspace learned on faces to detect a face.

e Approach: slide a window over each image position and calculate the

reconstruction error.
e Repeat for all scales. Makes sense to normalize the window intensity |w|=1.

e Low reconstruction error
indicates a face.
(i.e., apply a threshold)

% x| <6




PCA is a linear autoencoder
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Encoder-Decoder does not have to be linear
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 Modern Autoencoders apply (convolutional) neural networks to map
into a nonlinear subspace (latent space)



Autoencoders don’t have to just reconstruct

Faultless products Reconstructions

Zavrtanik, Kristan, Sko¢aj, DREM — A discriminatively trained reconstruction embedding for surface anomaly detection, ICCV 2021




Autoencoders don’t have to just reconstruct

Grayscale image

Color image

N
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Zhang et al., Colorful Image Colorization, ECCV 2016 [GIT]



http://richzhang.github.io/colorization

Textbooks on PCA

e Szeliski, R., Computer vision — algorithms and applications, 2011,

Section14.2.1 (available online)

* Forsyth, Ponce, Computer vision —a modern approach, second edition,
2012, Section 16.1.5

* Prince, S.J.D. Computer vision — modelling learning and inference, 2012,
Section 13.4 (to 13.4.3) (available online)




Classification task

 Assume we are given some training data of two categories:

Categoryl | Category 2
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* Task: Find a feature space in which these categories are most
easily distinguishable (maximize discrimination).
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Could we apply PCA?

 PCA minimizes reprojection (reconstruction) error

ich
hic )

Direction along W
data S easy
{0 discriminate

N

major d

CA
jrection from ¥

 PCAis ,unsupervised”: does not use class-label information

 That is why the discriminative information is not necessarily preserved.




Machine perception

DISCRIMINATION SUBSPACE:
LINEAR DISCRIMINANT ANALYSIS (LDA)




Linear Discriminant Analysis (LDA)

e Assume we know the class labels.

e Task: derive an approach that takes the
class-labels into consideration in
subspace estimation.

Find a subspace that:
e  Maximizes distances between classes

® Minimizes distances within classes

Subspace defined by w.




LDA - the mean image

Let X,, X,,..., X_ be sets of images from
c classes and let each set contain k

images: X; = {xj(i)}j:l:k.

For each class the mean image w;:




LDA - scatter matrices (covariances)

e The within-class scatter matrix:

C

Sw = ZZ(X?) —ﬂi)(X?) — M )T

i=1 ]

* The between-class scatter matrix:

Sg = iNi (1 — 1) (g — )’




LDA — The cost function

\ Class1

Looking for a projection direction w,
such that the projection of:

* within-class scatter matrix Sy, is small
(compact classes)

* between-class scatter matrix S is
large (classes far apart)

Recall covariance matrix projection
from PCA derivation:

o’ (w)=w'Xw

The projected scatter matrices:

2 T
oy =W S, W

2 _ \aqT
Op =W SgW




LDA — The cost function

The projected variances:

ol = WIS, W

O'Bg WTSbW

Ronald A. Fisher formulated the Linear

Discriminant (in 1936):

Fisher criteria (cost function):

T
J(w) = w' Syw

wlS,w

Wopt = argmax .J(w)



LDA - optimal projection calculation

* Maximize cost function over w: w'S W
J (W) =

-
WS, W
the solution as a generalized eigenvalue problem:

SgW= A, W

* If 5, is full-rank, we have S 'S w=Aw,
which is in fact the standard eigenvalue problem.

* For cclasses we get at most (c-1) projection directions.




LDA application

* Training:

 Compute LDA on a set of images X, and calculate the basis functions W as well as center means

(M, Uy ...) and overall mean .

Sy SeW = AW

* Recognition:

* Project new image x into the
LDA subspace using the matrix W

y = W' (x —p)

* Find the nearest class center
among all (projected) class centers:

{WT (i — ) fi=1:c

Class 2




LDA application

* Problem of singularities with high-dimensional data
-1 .
Sy SgW = AW
* If the data lies on a subspace, the ‘ /

L . . . 2
within-class scatter matrix Sy, will be singular. oo 1% Class 2

Sw = ZC:Z(X?) _/Ui)(x?) — H; )T %ﬂl

=l >

e Solution: find a non-degenerated subspace on the training set using
the PCA and perform LDA on the data projected to this subspace first.




The LDA algorithm

function [W,Ms]=Ida(X,c,n)

SB=0; SW=0;

MM=mean(X')";

fori=1:c
Ms(:,i)=mean(X(:,(i-1)*n+1:i*n)")’;
SB=SB+n*(Ms(:,i)-MM)*(Ms(:,i)-MM)";
for j=1:n

SW=SW+(X(:,(i-1)*n+j)-Ms(:,i)) * (X(:,(i-1) *n+j)-Ms(:,i))";

end;

end;

[W, EIGD] = eigs(inv(SW)*SB, c-1,'LM',opts);
Ms=W'*Ms;



Example

* Male vs. Female faces

* Success rate in recognition:

* Same persons: 95% Projection into only a single
iscriminative direction w.
* New persons: 92% most discr ative directio
Threshold
60
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jar
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G: Projection Coefficient

The Discriminant Eigentemplate

L L B

From K. Etemad, R. Chellapa, Discriminant analysis for recognition
of human faces. J. Opt. Soc. Am. A,Vol. 14, No. 8, August 1997




Example

* Images of ten persons projected onto the first two main directions
using LDA and PCA:

100k » &
-120F i
LDA .« - -
-160F 4
-180F

2 - -
9?30 -160 -140 -120 -104) -80 -60
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PCA

&
=200 -150 -100 =50 0 50 100 150 200

From K. Etemad, R. Chellapa, Discriminant analysis for recognition
of human faces. J. Opt. Soc. Am. A,Vol. 14, No. 8, August 1997



Many more subspace methods exist

e CCA, ICA, LLE, Robust variants, Kernel PCA, ...

¢ Spa rse reconstruction http://vcc.kaust.edu.sa/Pages/ICCV2013ShortCourse.aspx

* Deep learning era:

* PCA equivalents : Autoecoders
https://medium.com/swlh/introduction-to-autoencoders-56e5d60dad7f



https://medium.com/swlh/introduction-to-autoencoders-56e5d60dad7f
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